

Matrices

Learning & Revision for the Day

- Matrix
- Types of Matrices
- Equality of Matrices
- Algebra of Matrices
- Transpose of a Matrix
- Some Special Matrices
- Trace of a Matrix
- Equivalent Matrices
- Invertible Matrices

Matrix

- A matrix is an arrangement of numbers in rows and columns.
- A matrix having m rows and n columns is called a matrix of order $m \times n$ and the number of elements in this matrix will be mn.

$$\bullet \ \ \text{A matrix of order } m \times n \text{ is of the form } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

Some important terms related to matrices

- The element in the ith row and jth column is denoted by a_{ij} .
- The elements a_{11} , a_{22} , a_{33} ,..... are called diagonal elements.
- The line along which the diagonal elements lie is called the principal diagonal or simply the diagonal of the matrix.

Types of Matrices

- If all elements of a matrix are zero, then it is called a null or zero matrix and it is denoted by O.
- A matrix which has only one row and any number of columns is called a row matrix and if it has only one column and any number of rows, then it is called a column matrix.
- If in a matrix, the number of rows and columns are equal, then it is called a **square matrix**. If $A = [a_{ii}]_{n \times n}$, then it is known as square matrix of order n.
- If in a matrix, the number of rows is less/greater than the number of columns, then it is called **rectangular matrix**.
- If in a square matrix, all the non-diagonal elements are zero, it is called a diagonal matrix.

- If in a square matrix, all non-diagonal elements are zero and diagonal elements are equal, then it is called a scalar matrix.
- If in a square matrix, all non-diagonal elements are zero and diagonal elements are unity, then it is called an **unit** (identity) **matrix**. We denote the identity matrix of order n by I_n and when order is clear from context then we simply write it as I.
- In a square matrix, if $a_{ij} = 0$, $\forall i > j$, then it is called an **upper triangular matrix** and if $a_{ij} = 0$, $\forall i < j$, then it is called a **lower triangular matrix**.

NOTE • The diagonal elements of diagonal matrix may or may

Equality of Matrices

Two matrices A and B are said to be equal, if they are of same order and all the corresponding elements are equal.

Algebra of Matrices

- If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{m \times n}$ be two matrices of same order, then $A + B = [a_{ij} + b_{ij}]_{m \times n}$ and $A B = [a_{ij} b_{ij}]_{m \times n}$, where i = 1, 2, ..., m, j = 1, 2, ..., n.
- If $A = [a_{ij}]$ be an $m \times n$ matrix and k be any scalar, then, $kA = [ka_{ij}]_{m \times n}$.
- If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{n \times p}$ be any two matrices such that number of columns of A is equal to the number of rows of B, then the product matrix $AB = [c_{ij}]$, of order $m \times p$, where $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$.

Some Important Properties

- A + B = B + A (Commutativity of addition)
- (A + B) + C = A + (B + C) (Associativity of addition)
- $\alpha (A + B) = \alpha A + \alpha B$, where α is any scalar.
- $(\alpha + \beta) A = \alpha A + \beta A$, where α and β are any scalars.
- α (βA) = ($\alpha \beta$) A, where α and β are any scalars.
- (AB)C = A(BC) (Associativity of multiplication)
- AI = A = IA
- A(B+C) = AB + AC (Distributive property)

NOTE • $A^2 = A \cdot A$, $A^3 = A \cdot A \cdot A = A^2 \cdot A^1$, ...

- If the product AB is possible, then it is not necessary that the product BA is also possible. Also, it is not necessary that AB = BA.
- The product of two non-zero matrices can be a zero matrix.

Transpose of a Matrix

Let A be $m \times n$ matrix, then the matrix obtained by interchanging the rows and columns of A is called the transpose of A and is denoted by A' or A^C or A^T .

If *A* be $m \times n$ matrix, *A'* will be $n \times m$ matrix.

Important Results

- (i) If A and B are two matrices of order $m \times n$, then $(A \pm B)' = A' \pm B'$
- (ii) If k is a scalar, then (k A)' = k A'
- (iii) (A')' = A
- (iv) (AB)' = B'A'
- (v) $(A^n)' = (A')^n$

Some Special Matrices

- A square matrix A is called an idempotent matrix, if it satisfies the relation A² = A.
- A square matrix A is called nilpotent matrix of order k, if it satisfies the relation A^k = O, for some k ∈ N.
- The least value of *k* is called the index of the nilpotent matrix *A*.
- A square matrix A is called an **involutary matrix**, if it satisfies the relation $A^2 = I$.
- A square matrix A is called an orthogonal matrix, if it satisfies the relation AA' = I or A' A = I.
- A square matrix A is called **symmetric matrix**, if it satisfies the relation A' = A.
- A square matrix A is called skew-symmetric matrix, if it satisfies the relation A' = -A.

• If A and B are idempotent matrices, then A + B is idempotent iff AB = -BA.

• If
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
 is orthogonal, then

$$\sum a_i^2 = \sum b_i^2 = \sum c_i^2 = 1$$
 and $\sum a_i b_i = \sum b_i c_i = \sum a_i c_i = 0$

- If A and B are symmetric matrices of the same order, then
 (i) AB is symmetric if and only if AB = BA.
 - (ii) $A \pm B$, AB + BA are also symmetric matrices.
- If A and B are two skew-symmetric matrices, then
 (i) A ± B, AB BA are skew-symmetric matrices.
 (ii) AB + BA is a symmetric matrix.
- Every square matrix can be uniquely expressed as the sum of symmetric and skew-symmetric matrices.

i.e.
$$A = \frac{1}{2}(A + A') + \frac{1}{2}(A - A')$$
, where $\frac{1}{2}(A + A')$ and $\frac{1}{2}(A - A')$

are symmetric and skew-symmetric respectively.

Trace of a Matrix

The sum of the diagonal elements of a square matrix A is called the trace of A and is denoted by tr(A).

(i)
$$tr(\lambda A) = \lambda tr(A)$$
 (ii) $tr(A) = tr(A')$

(iii)
$$tr(AB) = tr(BA)$$

Equivalent Matrices

Two matrices A and B are said to be **equivalent**, if one is obtained from the other by one or more elementary operations and we write $A \sim B$.

Following types of operations are called **elementary** operations.

(i) Interchanging any two rows (columns).

This transformation is indicated by

$$R_i \leftrightarrow R_i (C_i \leftrightarrow C_i)$$

(ii) Multiplication of the elements of any row (column) by a non-zero scalar quantity, indicated as

$$R_i \rightarrow kR_i \ (C_i \rightarrow kC_i)$$

(iii) Addition of constant multiple of the elements of any row (column) to the corresponding elements of any other row (column), indicated as

$$R_i \rightarrow R_i + kR_i (C_i \rightarrow C_i + kC_i).$$

Invertible Matrices

- A square matrix *A* of order *n* is said to be **invertible** if there exists another square matrix B of order n such that AB = BA = I.
- The matrix B is called the inverse of matrix A and it is denoted by A^{-1} .

Some Important Results

- Inverse of a square matrix, if it exists, is unique.
- $AA^{-1} = I = A^{-1}A$
- If A and B are invertible, then $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^{-1})^T = (A^T)^{-1}$
- If A is symmetric, then A^{-1} will also be symmetric matrix.
- Every orthogonal matrix is invertible.

DAY PRACTICE SESSION 1

FOUNDATION QUESTIONS EXERCISE

1 If
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then which of the following is

→ NCERT Exemplar

(a)
$$(A + B) \cdot (A - B) = A^2 + B^2$$
 (b) $(A + B) \cdot (A - B) = A^2 - B^2$

(c)
$$(A + B) \cdot (A - B) = I$$
 (d) N

(d) None of these

2 If p, q, r are 3 real numbers satisfying the matrix

equation,
$$[p \ q \ r]$$
 $\begin{bmatrix} 3 & 4 & 1 \\ 3 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix}$ = $[3 \ 0 \ 1]$, then $2p + q - r$ is

equal to

→ JEE Mains 2013

$$(a) - 3$$

(b) -1

(c) 4

3 In a upper triangular matrix $n \times n$, minimum number of zeroes is

(a)
$$\frac{11(11-1)}{2}$$

4 Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, $a, b \in \mathbb{N}$. Then,

- (a) there exists more than one but finite number of B's such that AB = BA
- (b) there exists exactly one B such that AB = BA
- (c) there exist infinitely many B's such that AB = BA
- (d) there cannot exist any B such that AB = BA

- **5** If $A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$, then
 - (a) AB, BA exist and are equal
 - (b) AB, BA exist and are not equal
 - (c) AB exists and BA does not exist
 - (d) AB does not exist and BA exists

6 If
$$\omega \neq 1$$
 is the complex cube root of unity and matrix $H = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$, then H^{70} is equal to

(c) -H

- (d) H²
- 7 If A and B are 3×3 matrices such that AB = A and BA = B, then
 - (a) $A^2 = A$ and $B^2 \neq B$ (c) $A^2 = A$ and $B^2 = B$

(b) $A^2 \neq A$ and $B^2 = B$

(d) $A^2 \neq A$ and $B^2 \neq B$

8 For each real number x such that -1 < x < 1, let

$$A(x) = \begin{bmatrix} \frac{1}{1-x} & \frac{-x}{1-x} \\ \frac{-x}{1-x} & \frac{1}{1-x} \end{bmatrix} \text{ and } z = \frac{x+y}{1+xy}. \text{ Then,}$$

- (a) A(z) = A(x) + A(y)
- (b) $A(z) = A(x) [A(y)]^{-1}$
- (c) $A(z) = A(x) \cdot A(y)$
- (d) A(z) = A(x) A(y)

- **9** If $A(\alpha) = |\sin \alpha \cos \alpha + 0|$, then $A(\alpha) A(\beta)$ is equal to
 - (a) $A(\alpha\beta)$
- (b) $A(\alpha + \beta)$ (c) $A(\alpha \beta)$
- **10** If A is 3×4 matrix and B is a matrix such that A' B and BA' are both defined, then B is of the type
 - (a) 4×3
- (b) 3×4

- **11** If $A = \begin{bmatrix} 2 & 1 & -2 \end{bmatrix}$ is a matrix satisfying the equation

 $AA^{T} = 9I$, where I is 3×3 identity matrix, then the ordered pair (a,b) is equal to → JEE Mains 2015

- (a) (2, -1) (b) (-2, 1) (c) (2, 1)

- $[0 \ 0 \ 1]$ $[1 \ 0 \ 0]$ **12** If $E = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ and $F = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$, then $E^2 F + F^2 E$ 0 0 0
 - (a) F
- (b) E
- (c) 0
- **13** If A and B are two invertible matrices and both are symmetric and commute each other, then
 - (a) both $A^{-1}B$ and $A^{-1}B^{-1}$ are symmetric
 - (b) neither $A^{-1}B$ nor $A^{-1}B^{-1}$ are symmetric
 - (c) $A^{-1}B$ is symmetric but $A^{-1}B^{-1}$ is not symmetric
 - (d) $A^{-1}B^{-1}$ is symmetric but $A^{-1}B$ is not symmetric
- 14 If neither α nor β are multiples of $\pi/2$ and the product AB of matrices

and

is null matrix, then $\alpha - \beta$ is

- (b) multiple of π
- (c) an odd multiple of $\pi/2$
- (d) None of these
- **15** The matrix 1 2 3 is
 - (a) idempotent
- (b) nilpotent
- (c) involutary
- (d) orthogonal
- **16** If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ then
 - (a) A is skew-symmetric
- (b) symmetric
- (c) idempotent
- (d) orthogonal
- **17** If $A = \begin{bmatrix} a & a^2 1 & -2 \\ a + 1 & 1 & a^2 + 4 \\ -2 & 4a & 5 \end{bmatrix}$ is symmetric, then a is
- (b) 2
- (c) -1
- (d) None

18 If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \end{bmatrix}$ and $A^{T}A = AA^{T} = I$, then xy is

equal to

- (a) -1
- (b) 1
- (c) 2
- **19** If A and B are symmetric matrices of the same order and X = AB + BA and Y = AB - BA, then $(XY)^T$ is equal to
 - (a) XY

- (b) *YX*
- (c) YX
- (d) None of these
- **20** Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and

$$A^{-1} = \left[\frac{1}{6}(A^2 + cA + dI)\right]$$
. The values of *c* and *d* are

- (a) (-6, -11)
- (b) (6, 11)
- (c) (-6, 11)
- (d) (6, -11)
- 21 Elements of a matrix A of order 9×9 are defined as $a_{ii} = \omega^{i+j}$ (where ω is cube root of unity), then trace (A) of the matrix is
 - (a) 0
- $(c)\omega$

22 If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$, then

 α is equal to

- (a) 2
- (b) 5
- (c) 2
- (d) 1
- **23** If A is skew-symmetric and $B = (I A)^{-1}(I + A)$, then B is
 - (a) symmetric
 - (b) skew-symmetric
 - (c) orthogonal
 - (d) None of the above
- **24** Let *A* be a square matrix satisfying $A^2 + 5A + 5I = O$. The inverse of A + 2I is equal to
 - (a) A 2I
- (b) A + 3I
- (c) A 3I
- (d) does not exist
- **25** Let $A = \begin{bmatrix} 1 & 0 \\ 1/3 & 1 \end{bmatrix}$. Then A^{48} is

- (d) None of these
- **26** If X is any matrix of order $n \times p$ and I is an identity matrix of order $n \times n$, then the matrix $M = I - X(X'X)^{-1}X'$ is
 - I. Idempotent matrix
 - II. MX = O
 - (a) Only I is correct
- (b) Only II is correct
- (c) Both I and II are correct (d) None of them is correct

27 Let A and B be two symmetric matrices of order 3.

Statement I A (BA) and (AB) A are symmetric matrices.

Statement II AB is symmetric matrix, if matrix multiplication of A with B is commutative.

- (a) Statement I is true, Statement II is true; Statement II is a correct explanation for Statement I
- (b) Statement I is true. Statement II is true: Statement II is not a correct explanation for Statement I
- (c) Statement I is true; Statement II is false
- (d) Statement I is false; Statement II is true

28 Consider the following relation *R* on the set of real square matrices of order 3.

 $R = \{(A, B): A = P^{-1}BP \text{ for some invertible matrix } P\}$

Statement I *R* is an equivalence relation.

Statement II For any two invertible 3×3 matrices Mand $N_1(MN)^{-1} = N^{-1}M^{-1}$.

- (a) Statement I is false, Statement II is true
- (b) Statement I is true, Statement II is true; Statement II is correct explanation of Statement I
- (c) Statement I is true. Statement II is true: Statement II is not a correct explanation of Statement I
- (d) Statement I is true, Statement II is false

DAY PRACTICE SESSION 2

PROGRESSIVE QUESTIONS EXERCISE

- **1** If $A = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}$, then $I + 2A + 3A^2 + ... \infty$ is equal to
 - (a) $\begin{bmatrix} 4 & 1 \\ -4 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} 5 & 2 \\ -8 & -3 \end{bmatrix}$ (d) $\begin{bmatrix} 5 & 2 \\ -3 & -8 \end{bmatrix}$
- **2** The matrix A that commute with the matrix $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is
 - (a) $A = \frac{1}{2} \begin{pmatrix} 2a & 2b \\ 3b & 2a + 3b \end{pmatrix}$ (b) $A = \frac{1}{2} \begin{pmatrix} 2b & 2a \\ 3a & 2a + 3b \end{pmatrix}$ (c) $A = \frac{1}{3} \begin{pmatrix} 2a + 3b & 2a \\ 3a & 2a + 3b \end{pmatrix}$ (d) None of these
- 3 The total number of matrices that can be formed using 5 different letters such that no letter is repeated in any matrix, is
 - (a) 5!
- (c) $2 \times (5!)$
- (d) None of these
- 4 If A is symmetric and B is a skew-symmetric matrix, then for $n \in \mathbb{N}$, which of the following is not correct?
 - (a) A^n is symmetric
 - (b) B^n is symmetric if n is even
 - (c) A^n is symmetric if n is odd only
 - (d) B^n is skew-symmetric if n is odd
- **5** Consider three matrices $X = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}, Y = \begin{bmatrix} 5 & 4 \\ 6 & 5 \end{bmatrix}$ and

$$Z = \begin{bmatrix} 5 & -4 \\ -6 & 5 \end{bmatrix}$$
. Then, the value of the sum

$$tr(X) + tr\left(\frac{XYZ}{2}\right) + tr\left(\frac{X(YZ)^2}{4}\right) + tr\left(\frac{X(YZ)^3}{8}\right) + \dots \text{ to } \infty \text{ is}$$

(a) 6

- (c) 12

(d) None of these

- **6** If both $A \frac{1}{2}I$ and $A + \frac{1}{2}I$ are orthogonal matrices, then
 - (a) A is orthogonal
 - (b) A is skew-symmetric matrix
 - (c) A is symmetric matrix

7 If
$$A = \begin{bmatrix} \frac{-1+i\sqrt{3}}{2i} & \frac{-1-i\sqrt{3}}{2i} \\ \frac{1+i\sqrt{3}}{2i} & \frac{1-i\sqrt{3}}{2i} \end{bmatrix}$$
, $i = \sqrt{-1}$ and $f(x) = x^2 + 2$,

- (a) $\left(\frac{5-i\sqrt{3}}{2}\right)\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$ (b) $\left(\frac{3-i\sqrt{3}}{2}\right)\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$
- (d) $(2 + i\sqrt{3})\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- **8** If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, then A^n is equal to
- (a) $2^{n-1} A (n-1) I$ (c) $2^{n-1} A + (n-1) I$
- **9** Let $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$. Let $A^n = [b_{ij}]_{2 \times 2}$. Define

$$\lim_{n\to\infty}A^n=\lim_{n\to\infty}[b_{ij}]_{2\times 2}. \text{ Then }\lim_{n\to\infty}\left(\frac{A^n}{n}\right) \text{ is }$$

- (a) zero matrix (c) $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

- (d) limit does not exist
- **10** If B is skew-symmetric matrix of order n and A is $n \times 1$ column matrix and $A^T BA = [p]$, then
 - (a) p < 0
- (b) p = 0
- (c) p > 0
- (d) Nothing can be said

- **11** If A, B and A + B are idempotent matrices, then AB is equal to
 - (a) *BA*
- (b) BA

- **12** If $P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^{T}$, then $P^{T}Q^{2019}P$
 - is equal to

 - (a) $\begin{bmatrix} 1 & 2019 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 4 + 2019\sqrt{3} & 6057 \\ 2019 & 4 2019\sqrt{3} \end{bmatrix}$

 - (c) $\frac{1}{4}\begin{bmatrix} 2+\sqrt{3} & 1\\ -1 & 2-\sqrt{3} \end{bmatrix}$ (d) $\frac{1}{4}\begin{bmatrix} 2019 & 2-\sqrt{3}\\ 2+\sqrt{3} & 2019 \end{bmatrix}$
- 13 Which of the following is an orthogonal matrix?

 - (a) $\frac{1}{7}\begin{bmatrix} 6 & 2 & -3 \\ 2 & 3 & 6 \\ 3 & -6 & 2 \end{bmatrix}$ (b) $\frac{1}{7}\begin{bmatrix} 6 & 2 & 3 \\ 2 & -3 & 6 \\ 3 & 6 & -2 \end{bmatrix}$ (c) $\frac{1}{7}\begin{bmatrix} -6 & -2 & -3 \\ 2 & 3 & 6 \\ -3 & 6 & 2 \end{bmatrix}$ (d) $\frac{1}{7}\begin{bmatrix} 6 & -2 & 3 \\ 2 & 2 & -3 \\ -6 & 2 & 3 \end{bmatrix}$

- **14** If $A_1, A_3, ..., A_{2n-1}$ are n skew-symmetric matrices of same order, then $B = \sum_{r=1}^{n} (2r-1)(A_{2r-1})^{2r-1}$ will be
 - (a) symmetric
 - (b) skew-symmetric
 - (c) neither symmetric nor skew-symmetric
 - (d) data not adequate
- **15** Let matrix $A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$, where a, b, c are real positive

numbers with abc = 1. If $A^T A = I$, then $a^3 + b^3 + c^3$ is

(a) 3

(b) 4

(c) 2

- (d) None of these
- **16** If A is an 3×3 non-singular matrix such that AA' = A' Aand $B = A^{-1}A'$, then BB' equals → JEE Mains 2014
 - (a) $(B^{-1})'$ (c) I
- (d) B^{-1}
- 17 A is a 3×3 matrix with entries from the set $\{-1, 0, 1\}$. The probability that A is neither symmetric nor skew-symmetric is
 - (a) $\frac{3^9 3^6 3^3 + 1}{3^9}$ (b) $\frac{3^9 3^6 3^3}{3^9}$ (c) $\frac{3^9 3^6 + 1}{3^9}$

ANSWERS

- (SESSION 1)
- **1.** (d)
- **2.** (a)
- **3.** (a) **13.** (a)
- **4.** (c)
- **5.** (b)
- **6.** (a)
- **7.** (c)
- **8.** (c)
- **9.** (b) 10. (b)

- **11.** (d) **21.** (a)
- **12.** (b) **22.** (b)
- **23.** (c)
- **14.** (c) **24.** (b)
- **15.** (b)
- **16.** (d) **26.** (c)
- **17.** (b) **27.** (b)

7. (d)

17. (a)

- **18.** (c) **19.** (c)
- **20.** (c)

- (SESSION 2)
- **1.** (c) **11.** (b)
- **2.** (a) **12.** (a)
- **3.** (c) **13.** (a)
- **4.** (c) **14.** (b)
- **5.** (a) **15.** (d)

25. (c)

- **6.** (b) **16.** (c)
- **8.** (b)

28. (c)

10. (b) **9.** (a)

Hints and Explanations

SESSION 1

Here,

$$A + B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$$

$$A^{2} = A \cdot A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 + 1 & 0 + 1 \\ 0 + 1 & 1 + 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
and
$$B^{2} = B \cdot B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\therefore A^{2} + B^{2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A^{2} + B^{2} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A^{2} - B^{2} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$
and $(A + B)(A - B) = \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$

$$= \begin{bmatrix} 0 + 0 & 0 + 0 \\ 0 + 0 & 4 + 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$$

Clearly,
$$(A + B)(A - B) \neq A^2 - B^2$$

 $\neq A^2 + B^2 \neq I$.

2
$$[3p + 3q + 2r, 4p + 2q + 0,$$

$$p + 3q + 2r = [3 \ 0 \ 1]$$

$$\Rightarrow 3p + 3q + 2r = 3, 4p + 2q = 0,$$

$$p + 3q + 2r = 1$$

$$\Rightarrow p - 1q - -2r - 3$$

⇒
$$p = 1, q = -2, r = 3$$

∴ $2p + q - r = 2 - 2 - 3 = -3$

$$\therefore 2p + q - r = 2 - 2 - 3 = -3$$

3 We know that, a square matrix $A = [a_{ij}]$ is said to be an upper triangular matrix if $a_{ii} = 0$, $\forall i > j$.

Consider, an upper triangular matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 7 \end{bmatrix}_{3 \times}$$

Here, number of zeroes = $3 = \frac{3(3-1)}{}$

 \therefore Minimum number of zeroes

$$=\frac{n(n-1)}{2}$$

4 Clearly,
$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & 2b \\ 3a & 4b \end{bmatrix}$$

and $BA = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a & 2a \\ 3b & 4b \end{bmatrix}$

If AB = BA, then a = b. Hence, AB = BA is possible for infinitely many values of *B*'s.

- **5** Here, A is 2×3 matrix and B is 3×2
 - ∴ Both AB and BA exist, and AB is a 2×2 matrix, while BA is 3×3 matrix.

$$AB \neq BA$$
.

6 Clearly,

$$H^{2} = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} = \begin{bmatrix} \omega^{2} & 0 \\ 0 & \omega^{2} \end{bmatrix}$$

$$H^{3} = \begin{bmatrix} \omega^{2} & 0 \\ 0 & \omega^{2} \end{bmatrix} \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} = \begin{bmatrix} \omega^{3} & 0 \\ 0 & \omega^{3} \end{bmatrix}$$

$$\therefore H^{70} = \begin{bmatrix} \omega^{70} & 0 \\ 0 & \omega^{70} \end{bmatrix} = \begin{bmatrix} \omega^{69} \cdot \omega & 0 \\ 0 & \omega^{69} \cdot \omega \end{bmatrix}$$

$$= \begin{bmatrix} (\omega^{3})^{23} \cdot \omega & 0 \\ 0 & (\omega^{3})^{23} \cdot \omega \end{bmatrix}$$

$$= \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} = H \qquad [\because \omega^{3} = 1]$$

7 Since, AB = A

$$\therefore \qquad B = I \implies B^2 = B$$

Similarly, BA = B

$$\Rightarrow A^2 = A$$

Hence, $A^2 = A$ and $B^2 = B$

8 We have.

$$A(x) = \frac{1}{1-x} \begin{bmatrix} 1 & -x \\ -x & 1 \end{bmatrix} \dots (i)$$

$$\therefore A(y) = \frac{1}{1-y} \begin{bmatrix} 1 & -y \\ -y & 1 \end{bmatrix} \dots (ii)$$

and
$$A(z) = \frac{1}{1 - \frac{(x+y)}{1 + xy}}$$

$$\begin{bmatrix} 1 + xy & -(x+y) \\ -(x+y) & 1+xy \end{bmatrix} \dots (iii)$$

$$A(x) \cdot A(y) = \frac{1}{(1-x)(1-y)} \cdot \begin{bmatrix} 1 & -x \\ -x & 1 \end{bmatrix} \begin{bmatrix} 1 & -y \\ -y & 1 \end{bmatrix}$$

$$= \frac{1}{(1-x)(1-y)} \cdot \begin{bmatrix} 1+xy & -(x+y) \\ -(x+y) & 1+xy \end{bmatrix} \dots (iv)$$
From Eqs. (iii) and (iv), we get
$$A(z) = A(x) \cdot A(y).$$

$$\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \end{bmatrix}$$

From Eqs. (iii) and (iv), we get

$$A(z) = A(x) \cdot A(y)$$
.
 $\lceil \cos \alpha - \sin \alpha \rceil$

$$\mathbf{9} \ A(\alpha) \ A(\beta) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\times \begin{bmatrix} \cos \beta & -\sin \beta & 0 \\ \sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & 0 \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= A(\alpha + \beta)$$

10 Clearly, order of A' is 4×3 . Now, for A'B to be defined, order of Bshould be $3 \times m$ and for BA' to be defined, order of B should be $n \times 4$. Thus, for both A'B and BA' to be defined, order of B should be 3×4 .

11 Given,
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b \end{bmatrix}$$

$$\text{Now, } AA^{T} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & -2 & b \end{bmatrix} \begin{bmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ a & 2 & b \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \\ 2 & -2 & b \end{bmatrix}$$

$$= \begin{bmatrix} 9 & 0 & a+4+2b \\ 0 & 9 & 2a+2-2b \\ a+4+2b & 2a+2-2b & a^{2}+4+b^{2} \end{bmatrix}$$
It is given that, $AA^{T} = 9I$

$$\Rightarrow \begin{bmatrix} 9 & 0 & a+4+2b \\ 0 & 9 & 2a+2-2b \\ a+4+2b & 2a+2-2b & a^{2}+4+b^{2} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 9 & 0 & a+4+2b \\ 0 & 9 & 2a+2-2b \\ a+4+2b & 2a+2-2b & a^{2}+4+b^{2} \end{bmatrix}$$

$$[9 & 0 & 0]$$

On comparing, we get
$$a+4+2b=0$$

$$\Rightarrow a+2b=-4 \qquad ...(i)$$

$$2a+2-2b=0$$

 $= \begin{vmatrix} 0 & 9 & 0 \end{vmatrix}$

$$\Rightarrow a-b=-1 \qquad ...(ii)$$
 and $a^2+4+b^2=9 \qquad ...(iii)$
On solving Eqs. (i) and (ii), we get
$$a=-2,b=-1$$

This satisfies Eq. (iii) also. Hence, $(a,b) \equiv (-2,-1)$

12 *F* is unit matrix $\Rightarrow F^2 = F$ and $E^2F + F^2E = E^2 + E$ Also, $E^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$\therefore E^2 + E = E.$$

13 Consider,
$$(A^{-1}B)^T = B^T (A^{-1})^T$$

= $B^T (A^T)^{-1} = B A^{-1}$
[: $A^T = A$ and $B^T = B$]
= $A^{-1}B$

$$[\because AB = BA \Rightarrow A^{-1}(AB)A^{-1}$$
$$= A^{-1}(BA) A^{-1} \Rightarrow BA^{-1} = A^{-1}B]$$

 $\Rightarrow A^{-1}B$ is symmetric.

Now, consider

$$(A^{-1}B^{-1})^T = ((BA)^{-1})^T$$

$$= ((AB)^{-1})^T \quad [\because AB = BA]$$

$$= (B^{-1}A^{-1})^T = (A^{-1})^T (B^{-1})^T$$

$$= (A^T)^{-1} (B^T)^{-1} = A^{-1} B^{-1}$$

 $\Rightarrow A^{-1}B^{-1}$ is also symmetric.

14
$$AB = \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix}$$

$$\times \begin{bmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \alpha \cos \beta \cos(\alpha - \beta) \\ \sin \alpha \cos \beta \cos(\alpha - \beta) \end{bmatrix}$$

$$\begin{aligned} &\cos\alpha\sin\beta\cos(\alpha-\beta)\\ &\sin\alpha\sin\beta\cos(\alpha-\beta) \end{bmatrix} \\ = \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \cos(\alpha - \beta) = 0$$

$$\Rightarrow \alpha - \beta = (2n + 1) \pi / 2$$
15 Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{bmatrix}$$

Then,
$$A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, A is nilpotent matrix of index 2.

16
$$A' = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \neq A \text{ or } -A.$$

$$A A' = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

 $\therefore A$ is orthogonal.

- **17** *A* is symmetric $\Rightarrow a^2 - 1 = a + 1, a^2 + 4 = 4a$ $\Rightarrow a^2 - a - 2 = 0, a^2 - 4a + 4 = 0$ $\Rightarrow a = 2$.
- **18** Since, *A* is orthogonal, each row is orthogonal to the other rows. $\Rightarrow R_1 \cdot R_3 = 0$ $\Rightarrow x + 4 + 2y = 0$

Also,
$$R_2 \cdot R_3 = 0$$

 $\Rightarrow 2x + 2 - 2y = 0$

$$2x + 2 - 2y = 0$$

On solving, we get x = -2, y = -1 $\therefore xy = 2$

- **19** Since, A and B are symmetric matrices $\therefore X = AB + BA$ will be a symmetric matrix and Y = AB BA will be a skew-symmetric matrix.

 Thus, we get $X^T = X$ and $Y^T = -Y$ Now, consider $(XY)^T = Y^TX^T$ = (-Y)(X) = -YX
- **20** Clearly, $6A^{-1} = A^2 + cA + dI$ $\Rightarrow (6A^{-1})A = (A^2 + cA + dI)A$ [: Post multiply both sides by A] $\Rightarrow 6(A^{-1}A) = A^3 + cA^2 + dIA$ $\Rightarrow 6I = A^3 + cA^2 + dA$ [: $A^{-1}A = I$ and IA = A] $\Rightarrow A^3 + cA^2 + dA - 6I = O$...(i) Here, $A^2 = A \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 5 \\ 0 & -2 & 4 \end{bmatrix}$

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & -10 & 14 \end{bmatrix}$$
 and $A^3 = A^2 \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 5 \\ 0 & -10 & 14 \end{bmatrix} \times$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -11 & 19 \\ 0 & -38 & 46 \end{bmatrix}$$

Now, from Eq. (i), we get

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -11 & 19 \\ 0 & -38 & 46 \end{bmatrix} + c \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 5 \\ 0 & -10 & 14 \end{bmatrix} + d \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix} - 6 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{vmatrix}
1 + c + d - 6 & 0 \\
0 & -11 - c + d - 6 \\
0 & -38 - 10c - 2d
\end{vmatrix}$$

$$\begin{vmatrix}
0 \\
19 + 5c + d \\
46 + 14c + 4d - 6
\end{vmatrix}$$

$$\begin{vmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{vmatrix}$$

$$\Rightarrow 1+c+d-6=0;$$

$$-11-c+d-6=0$$

$$\Rightarrow c+d=5; -c+d=17$$
On solving, we get $c=-6, d=11$.
These value also satisfy other equations.

- **21** Clearly, $tr(A) = a_{11} + a_{22} + a_{33} + a_{44}$ $+ a_{55} + a_{66} + a_{77} + a_{88} + a_{99}$ $= \omega^2 + \omega^4 + \omega^6 + \omega^8 + \omega^{10} + \omega^{12}$ $+ \omega^{14} + \omega^{16} + \omega^{18}$ $= (\omega^2 + \omega + 1) + (\omega^2 + \omega + 1)$ $+ (\omega^2 + \omega + 1)[\because \omega^{3n} = 1, n \in N]$ $= 0 + 0 + 0 \qquad [\because 1 + \omega + \omega^2 = 0]$ = 0
- **22** Clearly, $AA^{-1} = I$ Now, if R_1 of A is multiplied by C_3 of A^{-1} , we get $2 - \alpha + 3 = 0 \Rightarrow \alpha = 5$
- **23** Consider, $BB^{T} = (I - A)^{-1}(I + A)(I + A)^{T}[(I - A)^{-1}]^{T}$ $= (I - A)^{-1}(I + A)(I - A)(I + A)^{-1}$ $= (I - A)^{-1}(I - A)(I + A)(I + A)^{-1}$ $= I \cdot I = I$ Hence, B is an orthogonal matrix.
- **24** We have, $A^2 + 5A + 5I = O$ $\Rightarrow A^2 + 5A + 6I = I$ $\Rightarrow (A + 2I)(A + 3I) = I$ $\Rightarrow A + 2I \text{ and } A + 3I \text{ are inverse of each other.}$

25 If
$$A = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix}$$
, then $A^2 = \begin{bmatrix} 1 & 0 \\ 2a & 1 \end{bmatrix}$

$$A^3 = \begin{bmatrix} 1 & 0 \\ 3a & 1 \end{bmatrix}, ..., A^n = \begin{bmatrix} 1 & 0 \\ na & 1 \end{bmatrix}$$
Here, $a = 1/3$,
$$\therefore A^{48} = \begin{bmatrix} 1 & 0 \\ 16 & 1 \end{bmatrix}$$

26 We have, $M = I - X (X'X)^{-1} X'$ $= I - X(X^{-1}(X')^{-1})X'$ $[\because (AB)^{-1} = B^{-1}A^{-1}]$ $= I - (XX^{-1})((X')^{-1}X')$ [by associative property] $= I - I \times I$ [$\because AA^{-1} = I = A^{-1}A$] = I - I [$\because I^2 = I$] = O

Clearly, $M^2 = O = M$

So, M is an idempotent matrix. Also, MX = O

27 Given, $A^{T} = A$ and $B^{T} = B$

Statement I
$$[A(BA)]^T = (BA)^T \cdot A^T$$

= $(A^T B^T) A^T$

= (AB) A = A (BA)

So, A(BA) is symmetric matrix. Similarly, (AB) A is symmetric matrix. Hence, Statement I is true. Also, Statement II is true but not a correct explanation of Statement I.

28 Given, $R = \{(A, B) : A = P^{-1} BP \text{ for } B$ some invertible matrix *P*}

For Statement I

(i) Reflexive ARA

$$\Rightarrow A = P^{-1}AP$$

which is true only, if P = I. Thus, $A = P^{-1}AP$ for some invertible matrix P.

So, R is Reflexive.

(ii) Symmetric

$$ARB \Rightarrow A = P^{-1}BP$$

$$\Rightarrow PAP^{-1} = P(P^{-1}BP)P^{-1}$$

$$\Rightarrow PAP^{-1} = (PP^{-1}) B(PP^{-1})$$

$$\therefore \qquad B = PAP^{-1}$$

Now, let
$$Q = P^{-1}$$

Then, $B = Q^{-1} AQ \Rightarrow BRA$

 \Rightarrow R is symmetric.

(iii) Transitive ARB and BRC

$$\Rightarrow A = P^{-1}BP$$

and
$$B = Q^{-1}CQ$$

$$\Rightarrow A = P^{-1} (Q^{-1}CQ) P$$

$$= (P^{-1}Q^{-1})C (QP)$$

$$= (QP)^{-1}C(QP)$$

So, ARC.

 $\Rightarrow R$ is transitive

So, R is an equivalence relation.

For Statement II It is always true that $(MN)^{-1} = N^{-1}M^{-1}$

Hence, both statements are true but second is not the correct explanation of first.

SESSION 2

1 Clearly,
$$A^2 = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = C$$

$$I + 2A + 3A^2 + ... = I + 2A$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ -8 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ -8 & -3 \end{bmatrix}$$

2 Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a matrix that

commute with
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
. Then,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} a+3b & 2a+4b \\ a+3d & 2a+4d \end{pmatrix}$$

$$= \begin{pmatrix} a + 2c & b + 2d \\ 3a + 4c & 3b + 4d \end{pmatrix}$$

On equating the corresponding elements, we get

$$a + 3b = a + 2c \Rightarrow 3b = 2c$$
 ...(i)

$$2a + 4b = b + 2d \Rightarrow 2a + 3b = 2d$$
 ...(ii)

$$c + 3d = 3a + 4c \Rightarrow a + c = d$$
 ...(iii)

$$2c + 4d = 3b + 4d \Rightarrow 3b = 2c$$
 ...(iv)

Thus, A can be taken as

$$\begin{pmatrix} a & b \\ \frac{3b}{2} & a + \frac{3}{2}b \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2a & 2b \\ 3b & 2a + 3b \end{pmatrix}$$

- **3** Clearly, matrix having five elements is of order $5\!\times\!1$ or $1\!\times 5$
 - ∴ Total number of such matrices = 2×5 !.

4
$$(A^n)' = (A \ A \cdots A)' = (A' A' \cdots A')$$

$$=(A')^n=A^n$$
 for all n

 $\therefore A^n$ is symmetric for all $n \in N$.

Also, B is skew-symmetric

$$\Rightarrow$$
 $B' = -B$.

$$\therefore (B^n)' = (B B \cdots B)' = (B'B' \cdots B')$$

$$=(B')^n$$

$$=(-B)^n = (-1)^n B^n$$
.

 $\Rightarrow B^n$ is symmetric if *n* is even and is skew-symmetric if n is odd.

5 Here, $YZ = \begin{bmatrix} 5 & 4 \\ 6 & 5 \end{bmatrix} \begin{bmatrix} 5 & -4 \\ -6 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} 6 & 5 \end{bmatrix} \begin{bmatrix} -6 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
$$\therefore tr(X) + tr\left(\frac{XYZ}{2}\right) + tr\left(\frac{X(YZ)^2}{4}\right)$$

$$+ tr\left(\frac{X(YZ)^3}{8}\right) + \dots$$

$$= tr(X) + tr\left(\frac{X}{2}\right) + tr\left(\frac{X}{4}\right) + \dots$$

$$= tr(X) + \frac{1}{2}tr(X) + \frac{1}{4}tr(X) + \dots$$

$$= tr(X) \left[1 + \frac{1}{2} + \frac{1}{2^2} + \dots \right]$$

$$=tr(X)\frac{1}{1}$$

$$2 = 2 tr(X) = 2(2 + 1) = 6$$

6 Since, both $A - \frac{1}{2}I$ and $A + \frac{1}{2}I$ are

orthogonal, therefore, we have
$$\left(A-\frac{1}{2}I\right)'\left(A-\frac{1}{2}I\right)=I$$

 $\Rightarrow \left(A' - \frac{1}{2}I\right)\left(A - \frac{1}{2}I\right) = I$...(i)

and
$$\left(A + \frac{1}{2}I\right)' \left(A + \frac{1}{2}I\right) = I$$

$$\Rightarrow \left(A' + \frac{1}{2}I\right)\left(A + \frac{1}{2}I\right) = I \qquad \dots \text{(ii)}$$

From Eq. (i), we get

$$A'A - \frac{1}{2}IA' - \frac{1}{2}IA + \frac{1}{4}I = I$$

$$\Rightarrow A'A - \frac{1}{2}A' - \frac{1}{2}A + \frac{1}{4}I = I$$
 ...(iii)

Similarly, from Eq. (ii), we get

$$A'A + \frac{1}{2}A' + \frac{1}{2}A + \frac{1}{4}I = I$$
 ...(iv)

On subtracting Eq. (iii) from Eq. (iv), we

$$A + A' = O$$

or
$$A' = -A$$

Hence, A is a skew-symmetric matrix.

7 We have, $A = \begin{bmatrix} \frac{\omega}{i} & \frac{\omega^2}{i} \\ -\frac{\omega^2}{i} & -\frac{\omega}{i} \end{bmatrix} = \frac{\omega}{i} \begin{bmatrix} 1 & \omega \\ -\omega & -1 \end{bmatrix}$

$$\therefore A^2 = -\omega^2 \begin{bmatrix} 1 - \omega^2 & 0 \\ 0 & 1 - \omega^2 \end{bmatrix}$$

$$= \begin{bmatrix} -\omega^2 + \omega^4 & 0 \\ 0 & -\omega^2 + \omega^4 \end{bmatrix}$$
$$= \begin{bmatrix} -\omega^2 + \omega & 0 \\ 0 & -\omega^2 + \omega \end{bmatrix}$$

$$f(y) = y^2 + 2$$
 [givon]

$$\therefore f(A) = A^2 + 2I$$

$$= \begin{bmatrix} -\omega^2 + \omega & 0 \\ 0 & -\omega^2 + \omega \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
$$= (-\omega^2 + \omega + 2) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= (3 + 2\omega)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{pmatrix} 1 & -3 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$= (2 + i\sqrt{3}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

8
$$A^2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$

$$A^n = \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$$

$$= \begin{bmatrix} n & 0 \\ n & n \end{bmatrix} - \begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix}$$

$$\mathbf{9} \ A^2 = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$$

$$\operatorname{Similarly}, A^3 = \begin{bmatrix} \cos 3\theta & \sin 3\theta \\ -\sin 3\theta & \cos 3\theta \end{bmatrix} \operatorname{etc}$$

$$\therefore \qquad A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}$$

$$= \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$\operatorname{Now}, \lim_{n \to \infty} \frac{A^n}{n} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \operatorname{as} \lim_{n \to \infty} \frac{b_{ij}}{n} = 0$$

10
$$A^T B A = [p] \Rightarrow (A^T B A)^T = [p]^T = [p]$$

 $\Rightarrow A^T B^T A = A^T (-B) A = [p]$
 $\Rightarrow [-p] = [p] \Rightarrow p = 0.$

11 Since, A, B and A + B are idempotent matrix

:.
$$A^2 = A$$
; $B^2 = B$ and $(A + B)^2 = A + B$
Now, consider $(A + B)^2 = A + B$

$$\Rightarrow A^{2} + B^{2} + AB + BA = A + B$$

$$\Rightarrow A + B + AB + BA = A + B$$

$$\Rightarrow AB = -BA$$

12 *P* is orthogonal matrix as $P^TP = I$

$$Q^{2019} = (PAP^{T})(PAP^{T})$$

$$...(PAP^{T}) = PA^{2019}P^{T}$$

$$P^{T}O^{2019}P = P^{T} \cdot PA^{2019}P^{T} \cdot P = A^{2019}$$

Now,
$$A^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
$$A^3 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow A^{2019} = \begin{bmatrix} 1 & 2019 \\ 0 & 1 \end{bmatrix}$$

13 We know that a matrix

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \text{ will be orthogonal if }$$

$$AA' = I, \text{ which implies }$$

$$\Sigma a_i^2 = \Sigma b_i^2 = \Sigma c_i^2 = 1$$
and
$$\Sigma a_i b_i = \Sigma b_i c_i = \Sigma c_i a_i = 0$$
Now, from the given options, only
$$\begin{bmatrix} 6 & 2 & -3 \\ 2 & 3 & 6 \\ 3 & -6 & 2 \end{bmatrix} \text{ satisfies these conditions.}$$

Hence,
$$\frac{1}{7} \begin{bmatrix} 6 & 2 & -3 \\ 2 & 3 & 6 \\ 3 & -6 & 2 \end{bmatrix}$$
 is an orthogonal

matrix.

14 We have,

$$B = A_1 + 3A_3^3 + \dots + (2n-1)A_{2n-1}^{2n-1}$$

Now,
$$B^T = (A_1 + 3A_3^3)$$

$$+ \dots + (2n-1)A_{2n-1}^{2n-1}^{T}$$

$$= A_1^T + (3A_3^3)^T + \dots + ((2n-1)A_{2n-1}^{2n-1})^T$$

$$= A_1^T + 3(A_3^T)^3$$

$$+ \dots + (2n-1) (A_{2n-1}^T)^{2n-1}$$

= $-A - 3A_3^3 - \dots - (2n-1)A_{2n-1}^{2n-1}$

 $[\because A_1,\,A_3,\,\dots,A_{2\,n\,-\,1} \text{ are skew-}\\ \text{symmetric matrices}$

$$(A_i)^T = -A_i \ \forall \ i = 1, 3, 5, 2n - 1$$

$$= -[A + 3A_3^3 + \dots + (2n-1)A_{2n-1}^{2n-1}]$$

-- R

Hence, B is a skew-symmetric matrix.

15
$$A^T A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \times \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$

$$= \begin{bmatrix} a^2 + b^2 + c^2 & ab + bc + ca \\ ab + bc + ca & b^2 + c^2 + a^2 \\ ab + bc + ca & ab + bc + ca \\ & ac + ab + bc \\ & ab + bc + ca \\ & a^2 + b^2 + c^2 \end{bmatrix}$$

$$A^T A = I \Rightarrow \alpha^2 + b^2 + c^2 = 1$$

and
$$ab + bc + ca = 0$$

Since
$$a, b, c > 0$$
,

 $\therefore ab + bc + ca \neq 0$ and hence no real value of $a^3 + b^3 + c^3$ exists.

16
$$AA' = A'A, B = A^{-1}A'.$$

 $BB' = (A^{-1}A')(A^{-1} \cdot A')'$
 $= (A^{-1}A')[(A')'(A^{-1})']$
 $= (A^{-1}A')[A(A')^{-1}]$
 $[\because (A^{-1})' = (A')^{-1}]$
 $= A^{-1}(A'A)(A')^{-1}$
 $= A^{-1}(AA')(A')^{-1}$ $[\because A'A = AA']$
 $= (A^{-1}A)[A'(A')^{-1}]$
 $= I \cdot I = I$

17 Total number of matrices = 3^9 . *A* is symmetric, then $a_{ii} = a_{ii}$. Now, 6 places (3 diagonal, 3 non-diagonal), can be filled from any of -1, 0, 1 in 3^6 ways. A is skew-symmetric, then diagonal entries are 'o' and a_{12} , a_{13} , a_{23} can be filled from any of -1, 0, 1 in 3^3 ways. Zero matrix is common.

∴ Favourable matrices are $3^9 - 3^6 - 3^3 + 1$.

Hence, required probability $=\frac{3^9-3^6-3^3+1}{3^9}$

